Rigged Configurations for all Symmetrizable Types

نویسندگان

  • Ben Salisbury
  • Travis Scrimshaw
چکیده

In an earlier work, the authors developed a rigged configuration model for the crystal B(∞) (which also descends to a model for irreducible highest weight crystals via a cutting procedure). However, the result obtained was only valid in finite types, affine types, and simply-laced indefinite types. In this paper, we show that the rigged configuration model proposed does indeed hold for all symmetrizable types. As an application, we give an easy combinatorial condition that gives a LittlewoodRichardson rule using rigged configurations which is valid in all symmetrizable KacMoody types.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal Structure on Rigged Configurations and the Filling Map

In this paper, we extend work of the first author on a crystal structure on rigged configurations of simply-laced type to all non-exceptional affine types using the technology of virtual rigged configurations and crystals. Under the bijection between rigged configurations and tensor products of Kirillov–Reshetikhin crystals specialized to a single tensor factor, we obtain a new tableaux model f...

متن کامل

Rigged Configurations and the Bethe Ansatz

This note is a review of rigged configurations and the Bethe Ansatz. In the first part, we focus on the algebraic Bethe Ansatz for the spin 1/2 XXX model and explain how rigged configurations label the solutions of the Bethe equations. This yields the bijection between rigged configurations and crystal paths/Young tableaux of Kerov, Kirillov and Reshetikhin. In the second part, we discuss a gen...

متن کامل

A crystal theoretic method for finding rigged configurations from paths

The Kerov–Kirillov–Reshetikhin (KKR) bijection gives one to one correspondences between the set of highest paths and the set of rigged configurations. In this paper, we give a crystal theoretic reformulation of the KKR map from the paths to rigged configurations, using the combinatorial R and energy functions. It makes the large scale structure of the combinatorial procedure of the KKR bijectio...

متن کامل

Rigged Configurations and Catalan Objects: Completing a Commutative Diagram with Dyck Paths and Rooted Planar Trees

We construct an explicit bijection between rigged configurations and rooted planar trees, which we prove is the composition of the the bijection defined by Kerov, Kirillov, and Reshitikhin between rigged configurations and Dyck paths and the bijection between Dyck paths and rooted planar trees defined by the planar code.

متن کامل

Fermionic Formulas and Rigged Configurations under Review

We give a review of the current status of the X = M conjecture. Here X stands for the one-dimensional configuration sum and M for the corresponding fermionic formula. There are three main versions of this conjecture: the unrestricted, the classically restricted and the level-restricted version. We discuss all three versions and illustrate the methods of proof with many examples for type A n−1. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017